Calcium regulation in the protozoan model, Paramecium tetraurelia.
نویسنده
چکیده
Early in eukaryotic evolution, the cell has evolved a considerable inventory of proteins engaged in the regulation of intracellular Ca(2+) concentrations, not only to avoid toxic effects but beyond that to exploit the signaling capacity of Ca(2+) by small changes in local concentration. Among protozoa, the ciliate Paramecium may now be one of the best analyzed models. Ciliary activity and exo-/endocytosis are governed by Ca(2+) , the latter by Ca(2+) mobilization from alveolar sacs and a superimposed store-operated Ca(2+) -influx. Paramecium cells possess plasma membrane- and endoplasmic reticulum-resident Ca(2+) -ATPases/pumps (PMCA, SERCA), a variety of Ca(2+) influx channels, including mechanosensitive and voltage-dependent channels in the plasma membrane, furthermore a plethora of Ca(2+) -release channels (CRC) of the inositol 1,4,5-trisphosphate and ryanodine receptor type in different compartments, notably the contractile vacuole complex and the alveolar sacs, as well as in vesicles participating in vesicular trafficking. Additional types of CRC probably also occur but they have not been identified at a molecular level as yet, as is the equivalent of synaptotagmin as a Ca(2+) sensor for exocytosis. Among established targets and sensors of Ca(2+) in Paramecium are calmodulin, calcineurin, as well as Ca(2+) /calmodulin-dependent protein kinases, all with multiple functions. Thus, basic elements of Ca(2+) signaling are available for Paramecium.
منابع مشابه
Presence and indirect immunofluorescent localization of calmodulin in Paramecium tetraurelia
In this paper we demonstrate the presence and localization of calmodulin, a calcium-dependent regulatory protein, in the ciliated protozoan Paramecium tetraurelia. Calmodulin is demonstrated by several criteria: (a) the ability of whole cell Paramecium extracts to stimulate mammalian phosphodiesterase activity, (b) the presence of an acidic, thermostable, 17,000-dalton polypeptide whose mobilit...
متن کاملProtein phosphatase 2B (PP2B, calcineurin) in Paramecium: partial characterization reveals that two members of the unusually large catalytic subunit family have distinct roles in calcium-dependent processes.
We characterized the calcineurin (CaN) gene family, including the subunits CaNA and CaNB, based upon sequence information obtained from the Paramecium genome project. Paramecium tetraurelia has seven subfamilies of the catalytic CaNA subunit and one subfamily of the regulatory CaNB subunit, with each subfamily having two members of considerable identity on the amino acid level (>or=55% between ...
متن کاملSubplasmalemmal Ca-stores in Paramecium tetraurelia : Iientification and characterisation of a sarco(endo)plasmic reticulum-like Ca2+-ATPase by phosphoenzyme intermediate formation and its inhibition by caffeine
Considering increasing interest in calcium stores in protozoa, including parasitic forms, and specifically in subplasmalemmal stores in higher eukaryotes, we have isolated subplasmalemmal calcium stores (alveolar sacs) from the ciliated protozoan, Paramecium tetraurelia. Using antibodies against established sarco(endo)plasmic reticulum Caz+-ATPases (SERCAs) we detected in Western blots of subce...
متن کاملRegulation of peptide-calmodulin complexes by protein kinase C in vivo.
We used the freshwater protozoan Paramecium tetraurelia to investigate the potential regulation by protein kinase C of calmodulin interactions with binding peptides in intact cells. In these organisms, an action potential results in membrane depolarization and a period of backward swimming; repolarization and a return to forward swimming requires the presence of normal calmodulin. We postulated...
متن کاملMolecular aspects of calcium signalling at the crossroads of unikont and bikont eukaryote evolution--the ciliated protozoan Paramecium in focus.
The ciliated protozoan, Paramecium tetraurelia has a high basic Ca(2+) leakage rate which is counteracted mainly by export through a contractile vacuole complex, based on its V-type H(+)-ATPase activity. In addition Paramecium cells dispose of P-type Ca(2+)-ATPases, i.e. a plasmamembrane and a sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase (PMCA, SERCA). Antiporter systems are to be expected,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of eukaryotic microbiology
دوره 61 1 شماره
صفحات -
تاریخ انتشار 2014